Fatigue crack retrofitting by closing crack surface

Zhiyuan YuanZhou, Bohai Ji, Zhongqiu Fu, Shigenobu Kainuma, Shigeaki Tsukamoto

研究成果: ジャーナルへの寄稿学術誌査読

23 被引用数 (Scopus)

抄録

This paper mainly focuses on the mechanism of fatigue crack retrofitting by closing crack surface, which has proved to be effective in numerous experiments. The process of crack-closure treatment was simulated by using finite-element approach, and its effect on the crack propagation behavior was discussed in detail. It is found that the crack surface after impact treatment will remain closed until the external stress becomes large enough, however, when it opens, it will propagate again according to the analysis of crack-tip opening displacement. The stress intensity factor is found to reduce after closing the crack surface, resulting in the retardation of crack propagation. An internal-eccentric crack model is proposed as an equivalent model to describe the crack profile after closing the crack surface. Numerical and experimental investigations both support the findings of the simulations. As a result, fatigue crack propagation can be delayed due to the crack surface closure effect, which is the intended purpose of the fatigue crack retrofitting process.

本文言語英語
ページ(範囲)229-237
ページ数9
ジャーナルInternational Journal of Fatigue
119
DOI
出版ステータス出版済み - 2月 2019

!!!All Science Journal Classification (ASJC) codes

  • モデリングとシミュレーション
  • 材料科学一般
  • 材料力学
  • 機械工学
  • 産業および生産工学

フィンガープリント

「Fatigue crack retrofitting by closing crack surface」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル