Fast LiDAR Upsampling using Conditional Diffusion Models

Sander Elias Magnussen Helgesen, Kazuto Nakashima, Jim Tørresen, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

The search for refining 3D LiDAR data has attracted growing interest motivated by recent techniques such as supervised learning or generative model-based methods. Existing approaches have shown the possibilities for using diffusion models to generate refined LiDAR data with high fidelity, although the performance and speed of such methods have been limited. These limitations make it difficult to execute in real-time, causing the approaches to struggle in real-world tasks such as autonomous navigation and human-robot interaction. In this work, we introduce a novel approach based on conditional diffusion models for fast and high-quality sparse-to-dense upsampling of 3D scene point clouds through an image representation. Our method employs denoising diffusion probabilistic models trained with conditional inpainting masks, which have been shown to give high performance on image completion tasks. We introduce a series of experiments, including multiple datasets, sampling steps, and conditional masks. This paper illustrates that our method outperforms the baselines in sampling speed and quality on upsampling tasks using the KITTI-360 dataset. Furthermore, we illustrate the generalization ability of our approach by simultaneously training on real-world and synthetic datasets, introducing variance in quality and environments.

本文言語英語
ホスト出版物のタイトル33rd IEEE International Conference on Robot and Human Interactive Communication, ROMAN 2024
出版社IEEE Computer Society
ページ272-277
ページ数6
ISBN(電子版)9798350375022
DOI
出版ステータス出版済み - 8月 2024
イベント33rd IEEE International Conference on Robot and Human Interactive Communication, ROMAN 2024 - Pasadena, 米国
継続期間: 8月 26 20248月 30 2024

出版物シリーズ

名前IEEE International Workshop on Robot and Human Communication, RO-MAN
ISSN(印刷版)1944-9445
ISSN(電子版)1944-9437

会議

会議33rd IEEE International Conference on Robot and Human Interactive Communication, ROMAN 2024
国/地域米国
CityPasadena
Period8/26/248/30/24

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • ソフトウェア

フィンガープリント

「Fast LiDAR Upsampling using Conditional Diffusion Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル