Extracting Predictive Indicator for Prognosis of Cerebral Infarction Using Machine Learning Techniques

Yasunobu Nohara, Koutarou Matsumoto, Naoki Nakashima

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Identifying important predicative indicators for prognosis is useful since these factors help for understanding diseases and determining treatments for patients. We extracted important factors for prognosis of cerebral infarction from EHR. We analyzed EHR data of 1,697 patients with 1,602 variables using gradient boosting decision tree. Extracted factors include not only well-known factors such as NIHSS but also new factors such as albumin-globulin ratio.

本文言語英語
ページ(範囲)1280
ジャーナルStudies in Health Technology and Informatics
245
出版ステータス出版済み - 1月 2018

フィンガープリント

「Extracting Predictive Indicator for Prognosis of Cerebral Infarction Using Machine Learning Techniques」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル