Extracting latent behavior patterns of people from probe request data: A non-negative tensor factorization approach

Kaito Oka, Masaki Igarashi, Atsushi Shimada, Rin Ichiro Taniguchi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Although people flow analysis is widely studied because of its importance, there are some difficulties with previous methods, such as the cost of sensors, person re-identification, and the spread of smartphone applications for collecting data. Today, Probe Request sensing for people flow analysis is gathering attention because it conquers many of the difficulties of previous methods. We propose a framework for Probe Request data analysis for extracting the latent behavior patterns of people. To make the extracted patterns understandable, we apply a Non-negative Tensor Factorization with a sparsity constraint and initialization with prior knowledge to the analysis. Experimental result showed that our framework helps the interpretation of Probe Request data.

本文言語英語
ホスト出版物のタイトルICPRAM 2017 - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods
編集者Maria De De Marsico, Gabriella Sanniti di Baja, Ana Fred
出版社SciTePress
ページ157-164
ページ数8
ISBN(電子版)9789897582226
DOI
出版ステータス出版済み - 2017
イベント6th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2017 - Porto, ポルトガル
継続期間: 2月 24 20172月 26 2017

出版物シリーズ

名前ICPRAM 2017 - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods
2017-January

会議

会議6th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2017
国/地域ポルトガル
CityPorto
Period2/24/172/26/17

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Extracting latent behavior patterns of people from probe request data: A non-negative tensor factorization approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル