Environmental and Behavioral Imitation for Autonomous Navigation

Junki Aoki, Fumihiro Sasaki, Kohei Matsumoto, Ryota Yamashina, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

In this paper, we introduce a framework for imitation learning in navigation that enables policy learning from one-shot images without a physical robot and facilitates the transfer of this policy from simulation to reality. Utilizing Neural Radiance Fields (NeRF), our approach generates a simulated environment and simultaneously models expert behavior. This removes the necessity for a physical robot during both the expert teaching phase and the agent's learning process, allowing for the application of policies learned within the NeRF simulation to real-world robots. We validate our method by demonstrating the navigation with an actual robot using the policy learned by our approach. Moreover, we present a method for adapting to changes in the robot configuration, such as camera parameters and robot dimensions, by simulating adjustments in the robot configuration throughout the learning and assessing its generalizability.

本文言語英語
ホスト出版物のタイトル2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7779-7786
ページ数8
ISBN(電子版)9798350377705
DOI
出版ステータス出版済み - 10月 14 2024
イベント2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, アラブ首長国連邦
継続期間: 10月 14 202410月 18 2024

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

会議

会議2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
国/地域アラブ首長国連邦
CityAbu Dhabi
Period10/14/2410/18/24

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Environmental and Behavioral Imitation for Autonomous Navigation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル