Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: Machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation

Masaru Kondo, Akimasa Sugizaki, Md Imrul Khalid, H. D.P. Wathsala, Kazunori Ishikawa, Satoshi Hara, Takayuki Takaai, Takashi Washio, Shinobu Takizawa, Hiroaki Sasai

研究成果: ジャーナルへの寄稿学術誌査読

13 被引用数 (Scopus)

抄録

A highly efficient synthesis of α-ketiminophosphonates has been established for the electrochemical oxidation of α-amino phosphonates with the utilization of machine-learning-assisted simultaneous multiparameter screening. After brief experimental screening, the Bayesian optimization with the experimental data (up to 12 entries) could rapidly predict the optimal conditions for the synthesis of α-ketiminophosphonates and sulfonyl ketimines with aryl and alkyl groups. The obtained α-ketiminophosphonates could be converted into highly functionalized α-amino acid analogues with a tetrasubstituted carbon center.

本文言語英語
ページ(範囲)5825-5831
ページ数7
ジャーナルGreen Chemistry
23
16
DOI
出版ステータス出版済み - 8月 21 2021
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 環境化学
  • 汚染

フィンガープリント

「Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: Machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル