TY - JOUR
T1 - Energy-efficient resource allocation in sensing-based spectrum sharing for cooperative cognitive radio networks
AU - Hao, Wanming
AU - Yang, Shouyi
AU - Muta, Osamu
AU - Gacanin, Haris
AU - Furukawa, Hiroshi
PY - 2016/8
Y1 - 2016/8
N2 - Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.
AB - Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.
UR - http://www.scopus.com/inward/record.url?scp=84980329165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84980329165&partnerID=8YFLogxK
U2 - 10.1587/transcom.2015CCP0026
DO - 10.1587/transcom.2015CCP0026
M3 - Article
AN - SCOPUS:84980329165
SN - 0916-8516
VL - E99B
SP - 1763
EP - 1771
JO - IEICE Transactions on Communications
JF - IEICE Transactions on Communications
IS - 8
ER -