TY - JOUR
T1 - Elucidating the crystal structure-dependent Cd2+-uptake property of benzimidazolium ionic liquid immobilized into macroporous polystyrene
AU - Daminova, Shahlo S.
AU - Kadirova, Zukhra C.
AU - Sharipov, Khasan T.
AU - Sanaqulov, Quvondiq S.
AU - Rakhmonova, Dilnoza S.
AU - Miyauchi, Masahiro
AU - Sugai, Yuichi
AU - Czech, Bozena
AU - Hojamberdiev, Mirabbos
N1 - Publisher Copyright:
© 2022 Elsevier Ltd.
PY - 2022/12
Y1 - 2022/12
N2 - In this study, the crystal structures of the 2-amino-1-methyl-1H-benzimidazol-3-ium(O,O-di-isopropylphosphorodithioate) ionic liquid - [C8H10N3]+ [C6H14O2P1S2]- [(MAB+H)DIPDTP] and bis(1-methyl-1 H-benzimidazol-2-amine)-bis(O,O-di-isopropyl phosphorodithioato)-cadmium(II) - C28H46Cd1N6O4P2S4 [Cd(MAB)2(DIPDTP)2]) are characterized by X-ray diffraction analysis. Organic ligands - O,O-di-isopropylphosphorodithioate (DIPDTP), 1-methyl-1 H-benzimidazol-2-amine (MAB), and new acid-base bi-functional protonic ionic liquid ([(MAB+H)DIPDTP]) - are immobilized into commercial polymeric crosslinked polystyrene-divinylbenzene sorbent (PAD600) and their sorption capacity for Cd2+ from aqueous solution is evaluated. The successful immobilization of DIPDTP and MAB into macroporous polystyrene is confirmed by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and N2-BET analysis. The Cd2+ sorption efficiency of PAD600-MAB-DIPDTP sorbent increases due to the combination of physical adsorption and extraction, surface complexation, and formation of metal complexes, chelates, and poorly soluble compounds. The adsorption equilibrium data are better fitted to the Freundlich isotherm models. The overall sorption is exothermic and spontaneous and follows a pseudo-second-order kinetic model. This indicates a complex sorption mechanism, including both physical adsorption and strong chemical interaction, dissociation constant, acid-base properties, and reaction condition (pH, temperature, concentration, etc.). The novel composite material can be a promising adsorbent for Cd2+ removal from contaminated water.
AB - In this study, the crystal structures of the 2-amino-1-methyl-1H-benzimidazol-3-ium(O,O-di-isopropylphosphorodithioate) ionic liquid - [C8H10N3]+ [C6H14O2P1S2]- [(MAB+H)DIPDTP] and bis(1-methyl-1 H-benzimidazol-2-amine)-bis(O,O-di-isopropyl phosphorodithioato)-cadmium(II) - C28H46Cd1N6O4P2S4 [Cd(MAB)2(DIPDTP)2]) are characterized by X-ray diffraction analysis. Organic ligands - O,O-di-isopropylphosphorodithioate (DIPDTP), 1-methyl-1 H-benzimidazol-2-amine (MAB), and new acid-base bi-functional protonic ionic liquid ([(MAB+H)DIPDTP]) - are immobilized into commercial polymeric crosslinked polystyrene-divinylbenzene sorbent (PAD600) and their sorption capacity for Cd2+ from aqueous solution is evaluated. The successful immobilization of DIPDTP and MAB into macroporous polystyrene is confirmed by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and N2-BET analysis. The Cd2+ sorption efficiency of PAD600-MAB-DIPDTP sorbent increases due to the combination of physical adsorption and extraction, surface complexation, and formation of metal complexes, chelates, and poorly soluble compounds. The adsorption equilibrium data are better fitted to the Freundlich isotherm models. The overall sorption is exothermic and spontaneous and follows a pseudo-second-order kinetic model. This indicates a complex sorption mechanism, including both physical adsorption and strong chemical interaction, dissociation constant, acid-base properties, and reaction condition (pH, temperature, concentration, etc.). The novel composite material can be a promising adsorbent for Cd2+ removal from contaminated water.
UR - http://www.scopus.com/inward/record.url?scp=85143049880&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143049880&partnerID=8YFLogxK
U2 - 10.1016/j.jece.2022.108900
DO - 10.1016/j.jece.2022.108900
M3 - Article
AN - SCOPUS:85143049880
SN - 2213-3437
VL - 10
JO - Journal of Environmental Chemical Engineering
JF - Journal of Environmental Chemical Engineering
IS - 6
M1 - 108900
ER -