Efficient Noise Generation to Achieve Differential Privacy with Applications to Secure Multiparty Computation

Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, Koji Nuida

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

4 被引用数 (Scopus)

抄録

This paper studies the problem of constructing secure multiparty computation protocols whose outputs satisfy differential privacy. We first provide a general framework for multiparty protocols generating shares of noise drawn from distributions capable of achieving differential privacy. Then, using this framework, we propose two kinds of protocols based on secret sharing. The first one is a constant-round protocol which enables parties to jointly generate shares of noise drawn from the discrete Laplace distribution. This protocol always outputs shares of noise while the previously known protocol fails with non-zero probability. The second protocol allows the parties to non-interactively obtain shares of noise following the binomial distribution by predistributing keys for pseudorandom functions in the setup phase. As a result, the parties can compute a share of noise enough to provide the computational analogue of ϵ -differential privacy with communication complexity independent of ϵ. It is much more efficient than the previous protocols which require communication complexity proportional to ϵ- 2 to achieve (information-theoretic) (ϵ, δ) -differential privacy for some δ> 0.

本文言語英語
ホスト出版物のタイトルFinancial Cryptography and Data Security - 25th International Conference, FC 2021, Revised Selected Papers
編集者Nikita Borisov, Claudia Diaz
出版社Springer Science and Business Media Deutschland GmbH
ページ271-290
ページ数20
ISBN(印刷版)9783662643211
DOI
出版ステータス出版済み - 2021
外部発表はい
イベント25th International Conference on Financial Cryptography and Data Security, FC 2021 - Virtual, Online
継続期間: 3月 1 20213月 5 2021

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12674 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議25th International Conference on Financial Cryptography and Data Security, FC 2021
CityVirtual, Online
Period3/1/213/5/21

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Efficient Noise Generation to Achieve Differential Privacy with Applications to Secure Multiparty Computation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル