Efficient and Secure: Privacy-Preserving Federated Learning for Resource-Constrained Devices

Muhammad Ayat Hidayat, Yugo Nakamura, Yutaka Arakawa

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Federated learning has gained popularity as a distributed machine learning approach that provides security and privacy for data trained on local devices. However, vulnerabilities still exist in this approach, and common solutions such as encryption and blockchain techniques often suffer from high computation and communication costs, making them impractical for resource-constrained devices. To solve this problem, we propose a privacy-preserving federated learning system that leverages compressive sensing and differential privacy, specifically designed for devices with limited computational resources. In this paper, we demonstrate the capabilities of our proposed system in resource-limited environments. We outline the features, infrastructure, and algorithm of our proposed system, and simulate its performance using image datasets on a Raspberry Pi 4 and an Android smartphone in a cloud environment. Our approach offers a practical solution for secure and privacy-preserving federated learning in resource-constrained scenarios, with potential applications in various domains such as healthcare, IoT, and edge computing.

本文言語英語
ホスト出版物のタイトルProceedings - 2023 24th IEEE International Conference on Mobile Data Management, MDM 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ184-187
ページ数4
ISBN(電子版)9798350341010
DOI
出版ステータス出版済み - 2023
イベント24th IEEE International Conference on Mobile Data Management, MDM 2023 - Singapore, シンガポール
継続期間: 7月 3 20237月 6 2023

出版物シリーズ

名前Proceedings - IEEE International Conference on Mobile Data Management
2023-July
ISSN(印刷版)1551-6245

会議

会議24th IEEE International Conference on Mobile Data Management, MDM 2023
国/地域シンガポール
CitySingapore
Period7/3/237/6/23

!!!All Science Journal Classification (ASJC) codes

  • 工学一般

フィンガープリント

「Efficient and Secure: Privacy-Preserving Federated Learning for Resource-Constrained Devices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル