TY - JOUR
T1 - Effects of Activin A on the phenotypic properties of human periodontal ligament cells
AU - Sugii, Hideki
AU - Maeda, Hidefumi
AU - Tomokiyo, Atsushi
AU - Yamamoto, Naohide
AU - Wada, Naohisa
AU - Koori, Katsuaki
AU - Hasegawa, Daigaku
AU - Hamano, Sayuri
AU - Yuda, Asuka
AU - Monnouchi, Satoshi
AU - Akamine, Akifumi
N1 - Funding Information:
We thank Drs. Teramatsu, Yoshida, Serita, Mitarai and Mizumachi for their great support in the preparation of this work. This work was financially supported by Grants-in-Aid for Scientific Research (Project Nos. 23659890 , 23689077 , 24390426 , 24659848 , 24792028 , 25293388 , and 25670811 ) from Japan Society for the Promotion of Science .
PY - 2014/9
Y1 - 2014/9
N2 - Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.
AB - Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.
UR - http://www.scopus.com/inward/record.url?scp=84902659506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902659506&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2014.05.021
DO - 10.1016/j.bone.2014.05.021
M3 - Article
C2 - 24928494
AN - SCOPUS:84902659506
SN - 8756-3282
VL - 66
SP - 62
EP - 71
JO - Bone
JF - Bone
ER -