Effective degradation of aqueous bisphenol-A using novel Ag2C2O4/Ag@GNS photocatalyst under visible light

Sethumathavan Vadivel, Metwally Madkour, Saravanan Rajendran, Chinnasamy Sengottaiyan

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)


Photocatalytic oxidation of toxic pollutants is a proficient technique to solve the problems associated with the treatment of bisphenol-A which is classified as 1B reprotoxic substance. In this paper, Ag2C2O4/Ag@GNS nanocomposite whereas Ag and graphene nanosheets (GNS) used as the charge carriers, which is combined through peroxymonosulfate (PMS) for the removal of bisphenol-A (BiP-A) for the first time. The XRD, UV-DRS, SEM, and TEM studies were performed to confirm the phase structure and the purity. Ag2C2O4/Ag@GNS nanocomposite exhibited superior photocatalytic performance and removal rate when compared with pure Ag2C2O4 and pure GNS. In Ag2C2O4/Ag@GNS photocatalyst, the deposited Ag on the surface of Ag2C2O4 rods effectively formed a metal and semiconductor heterostructure, thus photogenerated charge carriers were separated easily by the surface plasmon resonance effect (SPR) effect of noble Ag. Hence charge carriers lifetime has been extended to a great extent for the better photocatalytic performance. The experimental results confirmed that the ̊ O2, ̊ OH, ̊ SO4 radicals were played major role in the photolysis process. Furthermore, the effect of the photocatalyst & PMS concentration, pH and co-existing ions towards the BiP-A degradation were studied in detail. According to the mass spectroscopy studies BiP-A pollutant was effectively deteriorated into smaller molecules and CO2, H2O. Furthermore, we have proposed the possible degradation pathway and photocatalytic mechanism for better understanding.

ジャーナルInternational Journal of Hydrogen Energy
出版ステータス出版済み - 2月 26 2023

!!!All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • 凝縮系物理学
  • エネルギー工学および電力技術


「Effective degradation of aqueous bisphenol-A using novel Ag2C2O4/Ag@GNS photocatalyst under visible light」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。