Droplet model for autocorrelation functions in an Ising ferromagnet

Chao Tang, Hiizu Nakanishi, J. S. Langer

研究成果: ジャーナルへの寄稿学術誌査読

29 被引用数 (Scopus)

抄録

The autocorrelation function, C(t)= Si(0)Si(t)Si2 (0), of Ising spins in an ordered phase (T<Tc) is studied via a droplet model. Only noninteracting spherical droplets are considered. The Langevin equation for droplet fluctuations is studied in detail. The relaxation-rate spectra for the corresponding Fokker-Planck equation are found to be (1) continuous from zero for dimension d=2, (2) continuous with a finite gap for d=3, and (3) discrete for d4. These spectra are different from the gapless form assumed by Takano, Nakanishi, and Miyashita for the kinetic Ising model. The asymptotic form of C(t) is found to be exponential for d3 and stretched exponential with the exponent =1/2 for d=2. Our results for C(t) are consistent with the scaling argument of Huse and Fisher, but not with Ogielskis Monte Carlo simulations.

本文言語英語
ページ(範囲)995-1003
ページ数9
ジャーナルPhysical Review A
40
2
DOI
出版ステータス出版済み - 1989
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 原子分子物理学および光学

フィンガープリント

「Droplet model for autocorrelation functions in an Ising ferromagnet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル