Dose distribution prediction for optimal treamtment of modern external beam radiation therapy for nasopharyngeal carcinoma

Bilel Daoud, Ken’ichi Morooka, Shoko Miyauchi, Ryo Kurazume, Wafa Mnejja, Leila Farhat, Jamel Daoud

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

5 被引用数 (Scopus)

抄録

In Intensity-modulated radiation therapy, the planning of the optimal dose distribution for a patient is a complex and time-consuming process. This paper proposes a new automatic method for predicting of dose distribution of Nasopharyngeal carcinoma (NPC) from contoured computer tomography (CT) images. The proposed method consists of two phases: (1) predicting the 2D optimal dose images of each beam from contoured CT images of a patient by convolutional deep neural network model, called OTNet, and (2) integrating the optimal dose images of all the beams to predict the dose distribution for the patient. From the experiments using CT images of 80 NPC patients, our proposed method achieves a good performance for predicting dose distribution compared with conventional predicted dose distribution methods.

本文言語英語
ホスト出版物のタイトルArtificial Intelligence in Radiation Therapy - 1st International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Proceedings
編集者Dan Nguyen, Steve Jiang, Lei Xing
出版社Springer
ページ128-136
ページ数9
ISBN(印刷版)9783030324858
DOI
出版ステータス出版済み - 1月 1 2019
イベント1st International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019 - Shenzhen, 中国
継続期間: 10月 17 201910月 17 2019

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11850 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議1st International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019
国/地域中国
CityShenzhen
Period10/17/1910/17/19

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Dose distribution prediction for optimal treamtment of modern external beam radiation therapy for nasopharyngeal carcinoma」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル