TY - JOUR
T1 - Dislocation structure and activated slip systems in β-Silicon nitride during high temperature deformation
AU - Kawahara, K.
AU - Tsurekawa, S.
AU - Nakashima, H.
PY - 2000
Y1 - 2000
N2 - β-Silicon nitride (Si3N4) with sintering additives of 5mass% Y2O3 and 4mass% Al2O3 was deformed by compression at temperatures from 1820 to 2020K and at strain rates from 9×10-6 to 2×10-4 s-1. Dislocation structures were examined by transmission electron microscopy (TEM) to identify the slip systems activated during high temperature deformation. It was found that the high temperature deformation behavior of β-Si3N4 depended strongly on the deformation condition. A good ductility as well as 10% in plastic strain occurred without crack formation under the limited condition of higher temperatures and lower strain rates. Both from the Burgers vector analysis using the weak-beam method and from the trace analysis on TEM, most of dislocations operating during deformation were found to be c dislocations belonging to the {101̄0}[0001] primary slip system. In addition to c dislocations, a dislocations on a {101̄0} 〈12̄10〉 prism slip were often observed. However, a+c dislocations on the {112̄1} 〈2̄113〉 pyramidal slip were only activated under the limited conditions where a good ductility had been appeared by compression. It has been considered, therefore, that the occurrence of ductility would be closely related to the activation of the pyramidal slip system.
AB - β-Silicon nitride (Si3N4) with sintering additives of 5mass% Y2O3 and 4mass% Al2O3 was deformed by compression at temperatures from 1820 to 2020K and at strain rates from 9×10-6 to 2×10-4 s-1. Dislocation structures were examined by transmission electron microscopy (TEM) to identify the slip systems activated during high temperature deformation. It was found that the high temperature deformation behavior of β-Si3N4 depended strongly on the deformation condition. A good ductility as well as 10% in plastic strain occurred without crack formation under the limited condition of higher temperatures and lower strain rates. Both from the Burgers vector analysis using the weak-beam method and from the trace analysis on TEM, most of dislocations operating during deformation were found to be c dislocations belonging to the {101̄0}[0001] primary slip system. In addition to c dislocations, a dislocations on a {101̄0} 〈12̄10〉 prism slip were often observed. However, a+c dislocations on the {112̄1} 〈2̄113〉 pyramidal slip were only activated under the limited conditions where a good ductility had been appeared by compression. It has been considered, therefore, that the occurrence of ductility would be closely related to the activation of the pyramidal slip system.
UR - http://www.scopus.com/inward/record.url?scp=17944393334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17944393334&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:17944393334
SN - 1013-9826
VL - 171-174
SP - 825
EP - 832
JO - Key Engineering Materials
JF - Key Engineering Materials
T2 - Proceedings of the 1999 8th International Conference on Creep and Fracture of Engineering Materials and Structures
Y2 - 1 November 1999 through 5 November 1999
ER -