Discriminant Analysis via Smoothly Varying Regularization

Hisao Yoshida, Shuichi Kawano, Yoshiyuki Ninomiya

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

The discriminant method, which uses a basis expansion in the logistic regression model and estimates it by a simply regularized likelihood, is considerably efficient especially when the discrimination boundary is complex. However, when the complexities of the boundary are different by region, the method tends to cause under-fitting or/and over-fitting at some regions. To overcome this difficulty, a smoothly varying regularization is proposed in the framework of the logistic regression. Through simulation studies based on synthetic data, the superiority of the proposed method to some existing methods is checked.

本文言語英語
ホスト出版物のタイトルIntelligent Decision Technologies - Proceedings of the 13th KES-IDT 2021 Conference
編集者Ireneusz Czarnowski, Robert J. Howlett, Lakhmi C. Jain
出版社Springer Science and Business Media Deutschland GmbH
ページ441-455
ページ数15
ISBN(印刷版)9789811627644
DOI
出版ステータス出版済み - 2021
外部発表はい
イベント13th International KES Conference on Intelligent Decision Technologies, KES-IDT 2021 - Virtual, Online
継続期間: 6月 14 20216月 16 2021

出版物シリーズ

名前Smart Innovation, Systems and Technologies
238
ISSN(印刷版)2190-3018
ISSN(電子版)2190-3026

会議

会議13th International KES Conference on Intelligent Decision Technologies, KES-IDT 2021
CityVirtual, Online
Period6/14/216/16/21

!!!All Science Journal Classification (ASJC) codes

  • 決定科学一般
  • コンピュータサイエンス一般

フィンガープリント

「Discriminant Analysis via Smoothly Varying Regularization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル