Discovery of glaucoma progressive patterns using hierarchical MDL-based clustering

Shigeru Maya, Kai Morino, Hiroshi Murata, Ryo Asaoka, Kenji Yamanishi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

9 被引用数 (Scopus)

抄録

In this paper, we propose a method to cluster the spacial patterns of the visual field in glaucoma patients to analyze the progression patterns of glaucoma. The degree of progression in the visual field of glaucoma patients can be divided into several regions by straight line boundaries, we call this specific structure Direct Product Structure in this paper. Since we can observe the direct product structure in the visual fields, we propose a bottom-up hierarchical clustering method to embed this structure into the clustering structure. In our method, according to the minimum description length (MDL) principle, we select the best cluster division so that the total code length required for encoding the data as well as the clustering structure is minimum. We can thereby select the clusters that are robust to the noise in the position of the direct product structure for clustering. We demonstrate the effectiveness of our method using an artificial dataset and a real glaucoma dataset. Our proposed method performed better than existing methods for both datasets. For the real glaucoma dataset in particular, our method discovered the characteristic progressive patterns of glaucoma as specific features of clusters. These patterns agree with clinical knowledge. Furthermore, we show that our clusters can be applied to improve the accuracy of predicting glaucoma progression. Thus, our clusters contain rich information of glaucoma, and hence can contribute to further development in glaucoma research.

本文言語英語
ホスト出版物のタイトルKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
出版社Association for Computing Machinery
ページ1979-1988
ページ数10
ISBN(電子版)9781450336642
DOI
出版ステータス出版済み - 8月 10 2015
外部発表はい
イベント21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, オーストラリア
継続期間: 8月 10 20158月 13 2015

出版物シリーズ

名前Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
2015-August

その他

その他21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
国/地域オーストラリア
CitySydney
Period8/10/158/13/15

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 情報システム

フィンガープリント

「Discovery of glaucoma progressive patterns using hierarchical MDL-based clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル