Discovering functional gene pathways associated with cancer heterogeneity via sparse supervised learning

Shuichi Kawano, Teppei Shimamura, Atsushi Niida, Seiya Imoto, Rui Yamaguchi, Masao Nagasaki, Ryo Yoshida, Cristin Print, Satoru Miyano

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

We propose a statistical method for uncovering gene pathways that characterize cancer heterogeneity. To incorporate knowledge of the pathways into the model, we define a set of activities of pathways from microarray gene expression data based on the sparse probabilistic principal component analysis. A pathway activity logistic regression model is then formulated for cancer phenotype. To select pathway activities related to binary cancer phenotypes, we use the elastic net for the parameter estimation and derive a model selection criterion for selecting tuning parameters included in the model estimation. Our proposed method can also reverse-engineer gene networks based on the identified multiple pathways that enables us to discover novel gene-gene associations relating with the cancer phenotypes. We illustrate the whole process of the proposed method through the analysis of breast cancer gene expression data.

本文言語英語
ホスト出版物のタイトルProceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010
ページ253-258
ページ数6
DOI
出版ステータス出版済み - 2010
外部発表はい
イベント2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010 - Hong Kong, 中国
継続期間: 12月 18 201012月 21 2010

出版物シリーズ

名前Proceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010

その他

その他2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010
国/地域中国
CityHong Kong
Period12/18/1012/21/10

!!!All Science Journal Classification (ASJC) codes

  • 生体医工学
  • 健康情報学

フィンガープリント

「Discovering functional gene pathways associated with cancer heterogeneity via sparse supervised learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル