TY - JOUR
T1 - Direct Conversion of Human Endothelial Cells Into Liver Cancer-Forming Cells Using Nonintegrative Episomal Vectors
AU - Goya, Takeshi
AU - Horisawa, Kenichi
AU - Udono, Miyako
AU - Ohkawa, Yasuyuki
AU - Ogawa, Yoshihiro
AU - Sekiya, Sayaka
AU - Suzuki, Atsushi
N1 - Publisher Copyright:
© 2022 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.
PY - 2022/7
Y1 - 2022/7
N2 - Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular–cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
AB - Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular–cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
UR - http://www.scopus.com/inward/record.url?scp=85125384274&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125384274&partnerID=8YFLogxK
U2 - 10.1002/hep4.1911
DO - 10.1002/hep4.1911
M3 - Article
C2 - 35220676
AN - SCOPUS:85125384274
SN - 2471-254X
VL - 6
SP - 1725
EP - 1740
JO - Hepatology Communications
JF - Hepatology Communications
IS - 7
ER -