TY - JOUR
T1 - Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice
AU - Tanamachi, Koichiro
AU - Miyazaki, Masayuki
AU - Matsuo, Kazuhiro
AU - Suriyasak, Chetphilin
AU - Tamada, Aina
AU - Matsuyama, Kiyoshi
AU - Iwaya-Inoue, Mari
AU - Ishibashi, Yushi
N1 - Publisher Copyright:
© 2016 The Author(s). Published by Taylor & Francis.
PY - 2016
Y1 - 2016
N2 - High-temperature stress during the grain-filling stage reduces grain quality of rice, and this is a serious problem in Japan, especially in the Kyushu region. To solve this problem, various heat-tolerant cultivars have been bred, such as ‘Nikomaru’, ‘Kumasannochikara’, ‘Genkitsukushi’, ‘Sagabiyori’, and ‘Otentosodachi’. When cultivated under high temperature after flowering, these heat-tolerant cultivars had lower percentages of chalky grains than in the heat-sensitive cultivar ‘Hinohikari’. All the heat-tolerant cultivars markedly decreased the nonstructural carbohydrate content in the stem under the high temperature compared to control condition during early grain-filling stage, which is considered to be a common trait of heat tolerance. Notably, ‘Sagabiyori’, ‘Genkitsukushi’, and ‘Nikomaru’ maintained a nucellar epidermis at 17 days after flowering (DAF) under high temperature, whereas the nucellar epidermis disappeared in ‘Hinohikari’. In addition, the expression of AGPS2b, thought to be a rate-limiting enzyme in starch synthesis, in ‘Kumasannochikara’, ‘Otentosodachi’, and ‘Nikomaru’ did not decrease under high temperature, whereas ‘Hinohikari’, ‘Sagabiyori’, and ‘Genkitsukushi’ could not maintain expression of the gene at 17 DAF. Moreover, the expression of Amy3E, a starch-degradation-related gene considered to induce grain chalkiness, in ‘Kumasannochikara’ at 17 DAF was not increased by high temperature. These results suggest that the heat-stress-tolerant cultivars have various mechanisms for dealing with high-temperature stress.
AB - High-temperature stress during the grain-filling stage reduces grain quality of rice, and this is a serious problem in Japan, especially in the Kyushu region. To solve this problem, various heat-tolerant cultivars have been bred, such as ‘Nikomaru’, ‘Kumasannochikara’, ‘Genkitsukushi’, ‘Sagabiyori’, and ‘Otentosodachi’. When cultivated under high temperature after flowering, these heat-tolerant cultivars had lower percentages of chalky grains than in the heat-sensitive cultivar ‘Hinohikari’. All the heat-tolerant cultivars markedly decreased the nonstructural carbohydrate content in the stem under the high temperature compared to control condition during early grain-filling stage, which is considered to be a common trait of heat tolerance. Notably, ‘Sagabiyori’, ‘Genkitsukushi’, and ‘Nikomaru’ maintained a nucellar epidermis at 17 days after flowering (DAF) under high temperature, whereas the nucellar epidermis disappeared in ‘Hinohikari’. In addition, the expression of AGPS2b, thought to be a rate-limiting enzyme in starch synthesis, in ‘Kumasannochikara’, ‘Otentosodachi’, and ‘Nikomaru’ did not decrease under high temperature, whereas ‘Hinohikari’, ‘Sagabiyori’, and ‘Genkitsukushi’ could not maintain expression of the gene at 17 DAF. Moreover, the expression of Amy3E, a starch-degradation-related gene considered to induce grain chalkiness, in ‘Kumasannochikara’ at 17 DAF was not increased by high temperature. These results suggest that the heat-stress-tolerant cultivars have various mechanisms for dealing with high-temperature stress.
UR - http://www.scopus.com/inward/record.url?scp=84969724196&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969724196&partnerID=8YFLogxK
U2 - 10.1080/1343943X.2016.1140007
DO - 10.1080/1343943X.2016.1140007
M3 - Article
AN - SCOPUS:84969724196
SN - 1343-943X
VL - 19
SP - 300
EP - 308
JO - Plant Production Science
JF - Plant Production Science
IS - 2
ER -