Differential Privacy with Weighted for Privacy-Preservation in Human Activity Recognition

Ryusei Fujimoto, Yugo Nakamura, Yutaka Arakawa

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Many services based on human activity recognition (HAR) have been developed; however, user activity data include a large amount of private information. Although privacy protection is important in activity recognition, it has not been sufficiently explored. Therefore, we propose a privacy-preserving mechanism for HAR services that uses differential privacy. The proposed method reduces the user recognition accuracy to a level that satisfies the privacy requirements by adding weighted noise to the features in the learning model construction and then improves the activity recognition accuracy (service usefulness). The results indicate that when the privacy requirement is defined as less than the probability of a user being identified by chance, the proposed method improves the activity recognition accuracy by approximately 10 % compared to the conventional method.

本文言語英語
ホスト出版物のタイトル2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ634-639
ページ数6
ISBN(電子版)9781665453813
DOI
出版ステータス出版済み - 2023
イベント2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2023 - Atlanta, 米国
継続期間: 3月 13 20233月 17 2023

出版物シリーズ

名前2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2023

会議

会議2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2023
国/地域米国
CityAtlanta
Period3/13/233/17/23

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム
  • 情報システムおよび情報管理
  • 健康情報学
  • 心理学(その他)

フィンガープリント

「Differential Privacy with Weighted for Privacy-Preservation in Human Activity Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル