Development of Machine Learning Prediction Models for Self-Extubation After Delirium Using Emergency Department Data

Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Takanori Yamashita, Hidehisa Soejima, Naoki Nakashima

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Delirium is common in the emergency department, and once it develops, there is a risk of self-extubation of drains and tubes, so it is critical to predict delirium before it occurs. Machine learning was used to create two prediction models in this study: one for predicting the occurrence of delirium and one for predicting self-extubation after delirium. Each model showed high discriminative performance, indicating the possibility of selecting high-risk cases. Visualization of predictors using Shapley additive explanation (SHAP), a machine learning interpretability method, showed that the predictors of delirium were different from those of self-extubation after delirium. Data-driven decisions, rather than empirical decisions, on whether or not to use physical restraints or other actions that cause patient suffering will result in improved value in medical care.

本文言語英語
ホスト出版物のタイトルMEDINFO 2023 - The Future is Accessible
ホスト出版物のサブタイトルProceedings of the 19th World Congress on Medical and Health Informatics
編集者Jen Bichel-Findlay, Paula Otero, Philip Scott, Elaine Huesing
出版社IOS Press BV
ページ1001-1005
ページ数5
ISBN(電子版)9781643684567
DOI
出版ステータス出版済み - 1月 25 2024
イベント19th World Congress on Medical and Health Informatics, MedInfo 2023 - Sydney, オーストラリア
継続期間: 7月 8 20237月 12 2023

出版物シリーズ

名前Studies in Health Technology and Informatics
310
ISSN(印刷版)0926-9630
ISSN(電子版)1879-8365

会議

会議19th World Congress on Medical and Health Informatics, MedInfo 2023
国/地域オーストラリア
CitySydney
Period7/8/237/12/23

!!!All Science Journal Classification (ASJC) codes

  • 生体医工学
  • 健康情報学
  • 健康情報管理

フィンガープリント

「Development of Machine Learning Prediction Models for Self-Extubation After Delirium Using Emergency Department Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル