TY - JOUR
T1 - Development of corrugated ceramic sheet for SOFC electrolyte by micro imprint process
AU - Tsumori, Fujio
AU - Tokumaru, Kazuki
AU - Kudo, Kentaro
AU - Osada, Toshiko
AU - Miura, Hideshi
PY - 2016
Y1 - 2016
N2 - Yttria-stabilized zirconia (YSZ) has been used for an electrolyte of solid oxide fuel cells (SOFC). To enhance the efficiency of SOFC, we developed a corrugated, or wavy-shaped, YSZ sheet for the electrolyte. As the corrugated sheet has larger surface area than a flat-type sheet, higher energy density can be obtained. We have proposed micro powder imprint (μPI) with multi-layer imprint process to fabricate micro scale pattern on the both surfaces of a thin YSZ sheet. The μPI is a combined process of nano imprint lithography and powder metallurgy; the resolution is high, and the process is mass-productive. In this work, we selected a compound material containing YSZ powder and a binder consisting of thermoplastic resin as a starting material. The compound sheet was prepared by tape casting from slurry and was imprinted by a fine-patterned mold with stacked on a silicone rubber sheet. The silicone rubber was so flexible that micro patterns on the both sides of the compound sheet was obtained after imprint. In the present work, the process condition of μPI and the heat program of debinding and sintering were also considered. As a result, a wave-type sintered YSZ sheet without significant defects was successfully obtained.
AB - Yttria-stabilized zirconia (YSZ) has been used for an electrolyte of solid oxide fuel cells (SOFC). To enhance the efficiency of SOFC, we developed a corrugated, or wavy-shaped, YSZ sheet for the electrolyte. As the corrugated sheet has larger surface area than a flat-type sheet, higher energy density can be obtained. We have proposed micro powder imprint (μPI) with multi-layer imprint process to fabricate micro scale pattern on the both surfaces of a thin YSZ sheet. The μPI is a combined process of nano imprint lithography and powder metallurgy; the resolution is high, and the process is mass-productive. In this work, we selected a compound material containing YSZ powder and a binder consisting of thermoplastic resin as a starting material. The compound sheet was prepared by tape casting from slurry and was imprinted by a fine-patterned mold with stacked on a silicone rubber sheet. The silicone rubber was so flexible that micro patterns on the both sides of the compound sheet was obtained after imprint. In the present work, the process condition of μPI and the heat program of debinding and sintering were also considered. As a result, a wave-type sintered YSZ sheet without significant defects was successfully obtained.
UR - http://www.scopus.com/inward/record.url?scp=84982803917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982803917&partnerID=8YFLogxK
U2 - 10.2497/jjspm.63.519
DO - 10.2497/jjspm.63.519
M3 - Article
AN - SCOPUS:84982803917
SN - 0532-8799
VL - 63
SP - 519
EP - 523
JO - Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy
JF - Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy
IS - 7
ER -