Deuterium retention in tungsten irradiated by high-dose neutrons at high temperature

M. Oya, M. Shimada, C. N. Taylor, M. I. Kobayashi, Y. Nobuta, Y. Yamauchi, Y. Oya, Y. Ueda, Y. Hatano

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)


We investigated deuterium (D) retention in three W samples irradiated with MeV neutrons at high damage level of 0.39 ~ 0.74 displacements per atom (dpa) at high temperatures, 894 K, 1074 K and 1379 K. The W specimens were exposed to high-flux (~1 × 1022 m−2 s−1) and high-fluence (~5 × 1025 m−2) D plasma at 873 K in the Tritium Plasma Experiment. Broad desorption peaks extended from 900 K to 1200 K were observed for the neutron-irradiated W by thermal desorption spectroscopy (TDS). The retention in neutron-irradiated specimens was much larger than for an un-irradiated specimen. The highest D retention was obtained for a specimen irradiated at 894 K. With increasing neutron irradiation temperature, the retention was reduced about by half at 1074 K and further increase of the temperature (1379 K) resulted in comparable retention. In addition, one-dimensional diffusion calculations (D desorption in TDS and D depth distribution in plasma exposure) were performed to derive retention parameters (the detrapping energy, the depth occupied by D atoms and D/W ratio) from experimental D retention properties of neutron-irradiated W. By TDS simulation calculation, simple dependences of the peak temperature, height and width of TDS peaks on the retention parameters were obtained with total retention in the orders of 1019 ~ 1022 m−2. The calculation of the depth distribution of trapped D atoms made a relationship between the D/W ratio and the depth occupied by D atoms after plasma exposure at relevant conditions. By comparing the relationship (the D/W and the depth) with that obtained from the experimental results, we estimate each retention parameters for the specimens irradiated by high-dose neutrons at the high temperatures. And, we discussed the neutron-irradiation temperature dependence of D retentions.

ジャーナルNuclear Materials and Energy
出版ステータス出版済み - 6月 2021

!!!All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学
  • 原子力エネルギーおよび原子力工学
  • 材料科学(その他)


「Deuterium retention in tungsten irradiated by high-dose neutrons at high temperature」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。