Data driven time scale in Gaussian quasi-likelihood inference

Shoichi Eguchi, Hiroki Masuda

    研究成果: ジャーナルへの寄稿学術誌査読

    2 被引用数 (Scopus)

    抄録

    We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. High order uniform integrability of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings.

    本文言語英語
    ページ(範囲)383-430
    ページ数48
    ジャーナルStatistical Inference for Stochastic Processes
    22
    3
    DOI
    出版ステータス出版済み - 10月 15 2019

    !!!All Science Journal Classification (ASJC) codes

    • 統計学および確率

    フィンガープリント

    「Data driven time scale in Gaussian quasi-likelihood inference」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル