Curious-II: A Multi/Many-Objective Optimization Algorithm with Subpopulations based on Multi-novelty Search

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Novelty search’s ability to efficiently explore the fitness space is gaining attention. Different novelty metrics, however, produce different search results. Here we show that novelty metrics are complementary and a multi-novelty approach improves the performance substantially. Specifically, we propose a multi-novelty search multi/many-objective algorithm (Curious II) that has both Euclidian distance and prediction-error novelty metrics. On the one hand, the Euclidian distance based novelty metric makes the subpopulation explore subspaces with low crowd density and avoids premature convergence. On the other hand, the prediction-error novelty metric guides a subpopulation to explore subspaces with unexpected objective fitness. Experiments reveal that using both novelty metrics in a multi-novelty algorithm has strong benefits. Curious II was compared with two state-of-the-art algorithms and two novelty search-based algorithms on the WFG 1-8 test problem with up to 10 objectives. It outperforms all the others in 28 out of 32 tasks for the HV index and in 27 out of 32 tasks for the IGD index.

本文言語英語
ホスト出版物のタイトルGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
出版社Association for Computing Machinery, Inc
ページ375-378
ページ数4
ISBN(電子版)9798400701207
DOI
出版ステータス出版済み - 7月 15 2023
イベント2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion - Lisbon, ポルトガル
継続期間: 7月 15 20237月 19 2023

出版物シリーズ

名前GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion

会議

会議2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion
国/地域ポルトガル
CityLisbon
Period7/15/237/19/23

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 計算理論と計算数学
  • コンピュータ サイエンスの応用

フィンガープリント

「Curious-II: A Multi/Many-Objective Optimization Algorithm with Subpopulations based on Multi-novelty Search」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル