TY - JOUR
T1 - Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model
AU - Noguchi, Yasunori
AU - Yuan, Zuanning
AU - Bai, Lin
AU - Schneider, Sarah
AU - Zhao, Gongpu
AU - Stillman, Bruce
AU - Speck, Christian
AU - Li, Huilin
N1 - Funding Information:
ACKNOWLEDGMENTS. Cryo-EM data were collected at the David Van Andel Advanced Cryo-Electron Microscopy Suite in the Van Andel Research Institute. This work was funded by NIH Grants GM111472 (to H.L.) and GM45436 (to B.S.), UK Biotechnology and Biological Sciences Research Council Grant BB/N000323/1 (to C.S.), Wellcome Trust Investigator Award 107903/Z/15/Z (to C.S.), UK Medical Research Council Grant MC_U120085811 (to C.S.), and the Van Andel Research Institute (H.L.).
Publisher Copyright:
© 2017, National Academy of Sciences. All rights reserved.
PY - 2017/11/7
Y1 - 2017/11/7
N2 - During replication initiation, the core component of the helicase - the Mcm2-7 hexamer - is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide–oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2–Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.
AB - During replication initiation, the core component of the helicase - the Mcm2-7 hexamer - is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide–oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2–Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.
UR - http://www.scopus.com/inward/record.url?scp=85033773352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033773352&partnerID=8YFLogxK
U2 - 10.1073/pnas.1712537114
DO - 10.1073/pnas.1712537114
M3 - Article
C2 - 29078375
AN - SCOPUS:85033773352
SN - 0027-8424
VL - 114
SP - E9529-E9538
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 45
ER -