Crowd-Aware Robot Navigation with Switching Between Learning-Based and Rule-Based Methods Using Normalizing Flows

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Mobile robot navigation in crowded environments with pedestrians is a crucial challenge in realizing service robots that can assist people in their daily lives. Navigation methods for mobile robots in environments employing deep reinforcement learning have been extensively studied. However, addressing such unexpected situations is a significant challenge. This study presents an approach that discerns whether a situation has been supposed to utilize a normalizing flow and dynamically switches between learning- and rule-based methods. Specifically, the proposed method achieves a higher success rate than employing only a learning-based approach and reaches the destination faster than employing only a rule-based approach in unexpected situations. Experiments are conducted to validate the performance enhancement achieved with the proposed switching method in both simulated and real-world settings.

本文言語英語
ホスト出版物のタイトル2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4823-4830
ページ数8
ISBN(電子版)9798350377705
DOI
出版ステータス出版済み - 10月 14 2024
イベント2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, アラブ首長国連邦
継続期間: 10月 14 202410月 18 2024

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

会議

会議2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
国/地域アラブ首長国連邦
CityAbu Dhabi
Period10/14/2410/18/24

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Crowd-Aware Robot Navigation with Switching Between Learning-Based and Rule-Based Methods Using Normalizing Flows」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル