Cross-Modal Self-Supervised Feature Extraction for Anomaly Detection in Human Monitoring

Jose Alejandro Avellaneda, Tetsu Matsukawa, Einoshin Suzuki

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

This paper proposes to extract cross-modal self-supervised features to detect anomalies in human monitoring. Our previous works that use deep captioning in addition to monitoring images were successful. However, their use of unimodally trained image and text features shows deficiencies in capturing contextual information across the modalities. We devise a self-supervised method that creates cross-modal features by maximizing the mutual information between both modalities in a common subspace. It allows capturing different complex distributions between modalities, improving the detection performance of clustering methods. Extensive experimental results show improvements in both AUC and AUPRC scores when compared to the best baselines on two real-world datasets. The AUC has improved from 0.895 to 0.969, and from 0.97 to 0.98. The AUPRC has improved from 0.681 to 0.850, and from 0.840 to 0.894.

本文言語英語
ホスト出版物のタイトル2023 IEEE 19th International Conference on Automation Science and Engineering, CASE 2023
出版社IEEE Computer Society
ISBN(電子版)9798350320695
DOI
出版ステータス出版済み - 2023
イベント19th IEEE International Conference on Automation Science and Engineering, CASE 2023 - Auckland, ニュージ―ランド
継続期間: 8月 26 20238月 30 2023

出版物シリーズ

名前IEEE International Conference on Automation Science and Engineering
2023-August
ISSN(印刷版)2161-8070
ISSN(電子版)2161-8089

会議

会議19th IEEE International Conference on Automation Science and Engineering, CASE 2023
国/地域ニュージ―ランド
CityAuckland
Period8/26/238/30/23

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Cross-Modal Self-Supervised Feature Extraction for Anomaly Detection in Human Monitoring」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル