Correction: DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction (BMC Bioinformatics, (2020), 21, S3, (63), 10.1186/s12859-020-3342-z)

Niraj Thapa, Meenal Chaudhari, Sean McManus, Kaushik Roy, Robert H. Newman, Hiroto Saigo, Dukka B. Kc

研究成果: ジャーナルへの寄稿コメント/討論査読

1 被引用数 (Scopus)

抄録

After publication of this supplement article [1], it is requested to correct the below errors in the article: On page 1, the Result of Abstract should be changed to: Results: Using an independent test set of experimentally identified succinylation sites, our method achieved efficiency scores of 79%, 68.7% and 0.27 for sensitivity, specificity and MCC respectively, with an area under the receiver operator characteristic (ROC) curve of 0.8. In side-by-side comparisons with previously described succinylation site predictors, DeepSuccinylSite produces similar or better results compared to the other state-of-the-art predictors. On page 7, Last paragraph on right should be changed from Consequently, DeepSuccinylSite achieved a significantly higher performance as measured by MCC. Indeed, DeepSuccinylSite exhibited an ~ 62% increase in MCC when compared to the next highest method, GPSuc. to: Consequently, DeepSuccinylSite achieved an MCC score (at decision boundary of 0.5) on par with the top performingmethod, GPSuc. On page 2, in Table 1, the negative data of Independent Test should be 2977 rather than 254. On page 8, in Table 6, the MCC data of DeepSuccinylSite should be 0.27 rather than 0.48.

本文言語英語
論文番号349
ジャーナルBMC bioinformatics
23
1
DOI
出版ステータス出版済み - 12月 2022

!!!All Science Journal Classification (ASJC) codes

  • 構造生物学
  • 生化学
  • 分子生物学
  • コンピュータ サイエンスの応用
  • 応用数学

フィンガープリント

「Correction: DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction (BMC Bioinformatics, (2020), 21, S3, (63), 10.1186/s12859-020-3342-z)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル