Cores of Dirichlet forms related to random matrix theory

Hirofumi Osada, Hideki Tanemura

    研究成果: ジャーナルへの寄稿学術誌査読

    8 被引用数 (Scopus)

    抄録

    We prove the sets of polynomials on configuration spaces are cores of Dirichlet forms describing interacting Brownian motion in infinite dimensions. Typical examples of these stochastic dynamics are Dyson's Brownian motion and Airy interacting Brownian motion. Both particle systems have logarithmic interaction potentials, and naturally arise from random matrix theory. The results of the present paper will be used in a forth coming paper to prove the identity of the infinite-dimensional stochastic dynamics related to the random matrix theories constructed by apparently different methods: the method of space-time correlation functions and that of stochastic analysis.

    本文言語英語
    ページ(範囲)145-150
    ページ数6
    ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
    90
    10
    DOI
    出版ステータス出版済み - 2014

    !!!All Science Journal Classification (ASJC) codes

    • 数学一般

    フィンガープリント

    「Cores of Dirichlet forms related to random matrix theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル