Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes

Yuichi Shima, Kanako Miyabayashi, Shogo Haraguchi, Tatsuhiko Arakawa, Hiroyuki Otake, Takashi Baba, Sawako Matsuzaki, Yurina Shishido, Haruhiko Akiyama, Taro Tachibana, Kazuyoshi Tsutsui, Ken-Ichirou Morohashi

研究成果: ジャーナルへの寄稿学術誌査読

175 被引用数 (Scopus)

抄録

Testosterone is a final product of androgenic hormone biosynthesis, and Leydig cells are known to be the primary source of androgens. In the mammalian testis, two distinct populations of Leydig cells, the fetal and the adult Leydig cells, develop sequentially, and these two cell types differ both morphologically and functionally. It is well known that the adult Leydig cells maintain male reproductive function by producing testosterone. However, it has been controversial whether fetal Leydig cells can produce testosterone, and the synthetic pathway of testosterone in the fetal testis is not fully understood. In the present study, we generated transgenic mice in which enhanced green fluorescence protein was expressed under the control of a fetal Leydig cell-specific enhancer of the Ad4BP/SF-1 (Nr5a1) gene. The transgene construct was prepared by mutating the LIM homeodomain transcription factor (LHX9)-binding sequence in the promoter, which abolished promoter activity in the undifferentiated testicular cells. These transgenic mice were used to collect highly pure fetal Leydig cells. Gene expression and steroidogenic enzyme activities in the fetal Leydig cells as well as in the fetal Sertoli cells and adult Leydig cells were analyzed. Our results revealed that the fetal Leydig cells synthesize only androstenedione because they lack expression of Hsd17b3, and fetal Sertoli cells convert androstenedione to testosterone, whereas adult Leydig cells synthesize testosterone by themselves. The current study demonstrated that both Leydig and Sertoli cells are required for testosterone synthesis in the mouse fetal testis.

本文言語英語
ページ(範囲)63-73
ページ数11
ジャーナルMolecular Endocrinology
27
1
DOI
出版ステータス出版済み - 2013

!!!All Science Journal Classification (ASJC) codes

  • 分子生物学
  • 内分泌学

フィンガープリント

「Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル