Constraint-based learning Bayesian networks using Bayes factor

Kazuki Natori, Masaki Uto, Yu Nishiyama, Shuichi Kawano, Maomi Ueno

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

9 被引用数 (Scopus)

抄録

A score-based learning Bayesian networks, which seeks the best structure with a score function, incurs heavy computational costs. However, a constraint-based (CB) approach relaxes this problem and extends the available learning network size. A severe problem of the CB approach is its lower accuracy of learning than that of a score-based approach. Recently, several CI tests with consistency have been proposed. The main proposal of this study is to apply the CI tests to CB learning Bayesian networks. This method allows learning larger Bayesian networks than the score based approach does. Based on Bayesian theory, this paper addresses a CI test with consistency using Bayes factor. The result shows that Bayes factor with Jeffreys’ prior provides theoretically and empirically best performance.

本文言語英語
ホスト出版物のタイトルAdvanced Methodologies for Bayesian Networks - 2nd International Workshop, AMBN 2015, Proceedings
編集者Joe Suzuki, Maomi Ueno
出版社Springer Verlag
ページ15-31
ページ数17
ISBN(印刷版)9783319283784
DOI
出版ステータス出版済み - 2015
外部発表はい
イベント2nd International Workshop on Advanced Methodologies for Bayesian Networks, AMBN 2015 - Yokohama, 日本
継続期間: 11月 16 201511月 18 2015

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9505
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議2nd International Workshop on Advanced Methodologies for Bayesian Networks, AMBN 2015
国/地域日本
CityYokohama
Period11/16/1511/18/15

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Constraint-based learning Bayesian networks using Bayes factor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル