Comparison of Large Language Models for Generating Contextually Relevant Questions

Ivo Lodovico Molina, Valdemar Svabensky, Tsubasa Minematsu, Li Chen, Fumiya Okubo, Atsushi Shimada

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

This study explores the effectiveness of Large Language Models (LLMs) for Automatic Question Generation in educational settings. Three LLMs are compared in their ability to create questions from university slide text without fine-tuning. Questions were obtained in a two-step pipeline: first, answer phrases were extracted from slides using Llama 2-Chat 13B; then, the three models generated questions for each answer. To analyze whether the questions would be suitable in educational applications for students, a survey was conducted with 46 students who evaluated a total of 246 questions across five metrics: clarity, relevance, difficulty, slide relation, and question-answer alignment. Results indicate that GPT-3.5 and Llama 2-Chat 13B outperform Flan T5 XXL by a small margin, particularly in terms of clarity and question-answer alignment. GPT-3.5 especially excels at tailoring questions to match the input answers. The contribution of this research is the analysis of the capacity of LLMs for Automatic Question Generation in education.

本文言語英語
ホスト出版物のタイトルTechnology Enhanced Learning for Inclusive and Equitable Quality Education - 19th European Conference on Technology Enhanced Learning, EC-TEL 2024, Proceedings
編集者Rafael Ferreira Mello, Nikol Rummel, Ioana Jivet, Gerti Pishtari, José A. Ruipérez Valiente
出版社Springer Science and Business Media Deutschland GmbH
ページ137-143
ページ数7
ISBN(印刷版)9783031723117
DOI
出版ステータス出版済み - 2024
イベント19th European Conference on Technology Enhanced Learning, EC-TEL 2024 - Krems, オーストリア
継続期間: 9月 16 20249月 20 2024

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15160 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議19th European Conference on Technology Enhanced Learning, EC-TEL 2024
国/地域オーストリア
CityKrems
Period9/16/249/20/24

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Comparison of Large Language Models for Generating Contextually Relevant Questions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル