Characterization of languages in constant round perfect zero-knowledge interactive proofs

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

In this paper, we consider a class of the languages that have (constant round) perfect zero-knowledge interactive proofs without assuming any complexity assumptions. Especially, we investigate the interactive protocol with the restricted prover who runs in probabilistic polynomial time and knows the complete factorization as a trapdoor information of the integer associated with the input. We give a condition of the existence of constant round perfect zero-knowledge interactive proofs without assuming any complexity assumptions. The bit commitment based on the quadratic residuosity has an important role in our protocol and the simulation is based on the technique developed by Bellare, Micali, and Ostrovsky in Ref. (9), so call double running process. However, the proof of perfect zero-knowledgeness needs a more powerful simulation technique. Our simulation extracts more knowledge, the complete factorization of the integer associated with the input, from a (cheating) verifier than Bellare-Micali-Ostrovsky's simulation does. Furthermore, our main result implies that Blum integer has a five move perfect zero-knowledge interactive proof without assuming any complexity assumptions. (All previous known zero-knowledge protocols for Blum integer required either unproven cryptographic assumptions or unbounded number of rounds of message exchange.)

本文言語英語
ページ(範囲)546-554
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E76-A
4
出版ステータス出版済み - 4月 1 1993
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Characterization of languages in constant round perfect zero-knowledge interactive proofs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル