Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media

Fei Jiang, Takeshi Tsuji

    研究成果: ジャーナルへの寄稿学術誌査読

    52 被引用数 (Scopus)

    抄録

    The CO2 behavior within the reservoirs of carbon capture and storage projects is usually predicted from large-scale simulations of the reservoir. A key parameter in reservoir simulation is relative permeability. However, mineral precipitation alters the pore structure over time, and leads correspondingly to permeability changing with time. In this study, we numerically investigate the influence of carbonate precipitation on relative permeability during CO2 storage. The pore spaces in rock samples were extracted by high-resolution microcomputed tomography (CT) scanned images. The fluid velocity field within the three-dimensional pore spaces was calculated by the lattice Boltzmann method, while reactive transport with calcite deposition was modeled by an advection-reaction formulation solved by the finite volume method. To increase the computational efficiency and reduce the processing time, we adopted a graphics processing unit parallel computing technique. The relative permeability of the sample rock was then calculated by a highly optimized two-phase lattice Boltzmann model. We also proposed two pore clogging models. In the first model, the clogging processes are modeled by transforming fluid nodes to solid nodes based on their precipitated mass level. In the second model, the porosity is artificially reduced by adjusting the gray scale threshold of the CT images. The developed method accurately simulates the mineralization process observed in laboratory experiment. Precipitation-induced evolution of pore structure significantly influenced the absolute permeability. The relative permeability, however, was much more influenced by pore reduction in the nonwetting phase than in the wetting phase. The output of the structural changes in pore geometry by this model could be input to CO2 reservoir simulators to investigate the outcome of sequestered CO2.

    本文言語英語
    論文番号053306
    ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    90
    5
    DOI
    出版ステータス出版済み - 11月 12 2014

    !!!All Science Journal Classification (ASJC) codes

    • 統計物理学および非線形物理学
    • 統計学および確率
    • 凝縮系物理学

    フィンガープリント

    「Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル