Bit Catastrophes for the Burrows-Wheeler Transform

Sara Giuliani, Shunsuke Inenaga, Zsuzsanna Lipták, Giuseppe Romana, Marinella Sciortino, Cristian Urbina

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

9 被引用数 (Scopus)

抄録

A bit catastrophe, loosely defined, is when a change in just one character of a string causes a significant change in the size of the compressed string. We study this phenomenon for the Burrows-Wheeler Transform (BWT), a string transform at the heart of several of the most popular compressors and aligners today. The parameter determining the size of the compressed data is the number of equal-letter runs of the BWT, commonly denoted r. We exhibit infinite families of strings in which insertion, deletion, resp. substitution of one character increases r from constant to Θ(log n), where n is the length of the string. These strings can be interpreted both as examples for an increase by a multiplicative or an additive Θ(log n) -factor. As regards multiplicative factor, they attain the upper bound given by Akagi, Funakoshi, and Inenaga [Inf & Comput. 2023] of O(log nlog r), since here r= O(1 ). We then give examples of strings in which insertion, deletion, resp. substitution of a character increases r by a Θ(n) additive factor. These strings significantly improve the best known lower bound for an additive factor of Ω(log n) [Giuliani et al., SOFSEM 2021].

本文言語英語
ホスト出版物のタイトルDevelopments in Language Theory - 27th International Conference, DLT 2023, Proceedings
編集者Frank Drewes, Mikhail Volkov
出版社Springer Science and Business Media Deutschland GmbH
ページ86-99
ページ数14
ISBN(印刷版)9783031332630
DOI
出版ステータス出版済み - 2023
イベント27th International Conference on Developments in Language Theory, DLT 2023 - Umeå, スウェーデン
継続期間: 6月 12 20236月 16 2023

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13911 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議27th International Conference on Developments in Language Theory, DLT 2023
国/地域スウェーデン
CityUmeå
Period6/12/236/16/23

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Bit Catastrophes for the Burrows-Wheeler Transform」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル