抄録
The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 μs by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not only provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification. [Figure not available: see fulltext.]
本文言語 | 英語 |
---|---|
ページ(範囲) | 1497-1506 |
ページ数 | 10 |
ジャーナル | Nano Research |
巻 | 7 |
号 | 10 |
DOI | |
出版ステータス | 出版済み - 10月 31 2014 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 原子分子物理学および光学
- 材料科学(全般)
- 凝縮系物理学
- 電子工学および電気工学