Bayesian sparse convex clustering via global-local shrinkage priors

Kaito Shimamura, Shuichi Kawano

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

Sparse convex clustering is to group observations and conduct variable selection simultaneously in the framework of convex clustering. Although a weighted L1 norm is usually employed for the regularization term in sparse convex clustering, its use increases the dependence on the data and reduces the estimation accuracy if the sample size is not sufficient. To tackle these problems, this paper proposes a Bayesian sparse convex clustering method based on the ideas of Bayesian lasso and global-local shrinkage priors. We introduce Gibbs sampling algorithms for our method using scale mixtures of normal distributions. The effectiveness of the proposed methods is shown in simulation studies and a real data analysis.

本文言語英語
ページ(範囲)2671-2699
ページ数29
ジャーナルComputational Statistics
36
4
DOI
出版ステータス出版済み - 12月 2021
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 統計学、確率および不確実性
  • 計算数学

フィンガープリント

「Bayesian sparse convex clustering via global-local shrinkage priors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル