Bayesian generalized fused lasso modeling via NEG distribution

Kaito Shimamura, Masao Ueki, Shuichi Kawano, Sadanori Konishi

研究成果: ジャーナルへの寄稿学術誌査読

11 被引用数 (Scopus)

抄録

The fused lasso penalizes a loss function by the L1 norm for both the regression coefficients and their successive differences to encourage sparsity of both. In this paper, we propose a Bayesian generalized fused lasso modeling based on a normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed into the difference of successive regression coefficients. The proposed method enables us to construct a more versatile sparse model than the ordinary fused lasso using a flexible regularization term. Simulation studies and real data analyses show that the proposed method has superior performance to the ordinary fused lasso.

本文言語英語
ページ(範囲)4132-4153
ページ数22
ジャーナルCommunications in Statistics - Theory and Methods
48
16
DOI
出版ステータス出版済み - 8月 18 2019
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率

フィンガープリント

「Bayesian generalized fused lasso modeling via NEG distribution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル