抄録
L1-norm regularized logistic regression models are widely used for analyzing data with binary response. In those analyses, fusing regression coefficients is useful for detecting groups of variables. This paper proposes a binomial logistic regression model with Bayesian fused lasso. Assuming a Laplace prior on regression coefficients and differences between adjacent regression coefficients enables us to perform variable selection and variable fusion simultaneously in the Bayesian framework. We also propose assuming a horseshoe prior on the differences to improve the flexibility of variable fusion. The Gibbs sampler is derived to estimate the parameters by a hierarchical expression of priors and a data-augmentation method. Using simulation studies and real data analysis, we compare the proposed methods with the existing method.
本文言語 | 英語 |
---|---|
論文番号 | 107450 |
ページ(範囲) | 139-161 |
ページ数 | 23 |
ジャーナル | Behaviormetrika |
巻 | 52 |
号 | 1 |
DOI | |
出版ステータス | 出版済み - 1月 2025 |
!!!All Science Journal Classification (ASJC) codes
- 分析
- 実験心理学および認知心理学
- 臨床心理学
- 応用数学