Bayesian fused lasso modeling for binary data

Yuko Kakikawa, Shuichi Kawano

研究成果: ジャーナルへの寄稿学術誌査読

抄録

L1-norm regularized logistic regression models are widely used for analyzing data with binary response. In those analyses, fusing regression coefficients is useful for detecting groups of variables. This paper proposes a binomial logistic regression model with Bayesian fused lasso. Assuming a Laplace prior on regression coefficients and differences between adjacent regression coefficients enables us to perform variable selection and variable fusion simultaneously in the Bayesian framework. We also propose assuming a horseshoe prior on the differences to improve the flexibility of variable fusion. The Gibbs sampler is derived to estimate the parameters by a hierarchical expression of priors and a data-augmentation method. Using simulation studies and real data analysis, we compare the proposed methods with the existing method.

本文言語英語
論文番号107450
ページ(範囲)139-161
ページ数23
ジャーナルBehaviormetrika
52
1
DOI
出版ステータス出版済み - 1月 2025

!!!All Science Journal Classification (ASJC) codes

  • 分析
  • 実験心理学および認知心理学
  • 臨床心理学
  • 応用数学

フィンガープリント

「Bayesian fused lasso modeling for binary data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル