Basis Sequence Reconfiguration in the Union of Matroids

Tesshu Hanaka, Yuni Iwamasa, Yasuaki Kobayashi, Yuto Okada, Rin Saito

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Given a graph G and two spanning trees T and T in G, Spanning Tree Reconfiguration asks whether there is a step-by-step transformation from T to T such that all intermediates are also spanning trees of G, by exchanging an edge in T with an edge outside T at a single step. This problem is naturally related to matroid theory, which shows that there always exists such a transformation for any pair of T and T. Motivated by this example, we study the problem of transforming a sequence of spanning trees into another sequence of spanning trees. We formulate this problem in the language of matroid theory: Given two sequences of bases of matroids, the goal is to decide whether there is a transformation between these sequences. We design a polynomial-time algorithm for this problem, even if the matroids are given as basis oracles. To complement this algorithmic result, we show that the problem of finding a shortest transformation is NP-hard to approximate within a factor of clog n for some constant c > 0, where n is the total size of the ground sets of the input matroids.

本文言語英語
ホスト出版物のタイトル35th International Symposium on Algorithms and Computation, ISAAC 2024
編集者Julian Mestre, Anthony Wirth
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959773546
DOI
出版ステータス出版済み - 12月 4 2024
イベント35th International Symposium on Algorithms and Computation, ISAAC 2024 - Sydney, オーストラリア
継続期間: 12月 8 202412月 11 2024

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
322
ISSN(印刷版)1868-8969

会議

会議35th International Symposium on Algorithms and Computation, ISAAC 2024
国/地域オーストラリア
CitySydney
Period12/8/2412/11/24

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「Basis Sequence Reconfiguration in the Union of Matroids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル