Automated evaluation of student comments on their learning behavior

Kazumasa Goda, Sachio Hirokawa, Tsunenori Mine

研究成果: ジャーナルへの寄稿会議記事査読

4 被引用数 (Scopus)

抄録

Learning comments are valuable sources of interpreting student status of understanding. The PCN method introduced in [Gouda2011] analyzes the attitudes of a student from a view point of time series. Each sentence of a comment is manually classified as one of P,C,N or O sentence. P(previous) indicates learning activities before the classtime, C(current) represents understanding or achievements during the classtime, and N(next) means a learning activity plan or goal until next class. The present paper applies SVM(Support Vecotor Machine) to predict the category to which a given sentence belongs. Empirical evaluation using 4,086 sentences was conducted. By selecting feature words of each category, the prediction performance was satisfactory with F-measures 0.8203, 0.7352, 0.8416 and 0.8612 for P,C,N and O respectively.

本文言語英語
ページ(範囲)131-140
ページ数10
ジャーナルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8167 LNCS
DOI
出版ステータス出版済み - 2013
イベント12th International Conference on Web-based Learning, ICWL 2013 - Kenting, 台湾
継続期間: 10月 6 201310月 9 2013

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Automated evaluation of student comments on their learning behavior」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル