Asymptotic structure of free product von Neumann algebras

Cyril Houdayer, Yoshimichi Ueda

    研究成果: ジャーナルへの寄稿学術誌査読

    14 被引用数 (Scopus)

    抄録

    Let (M, φ) = (M 1, φ1) ∗ (M 2, φ2) be the free product of any σ-finite von Neumann algebras endowed with any faithful normal states. We show that whenever Q C M is a von Neumann subalgebra with separable predual such that both Q and Q ∩ M 1 are the ranges of faithful normal conditional expectations and such that both the intersection Q ∩ M 1 and the central sequence algebra Q′ ∩ Mω are diffuse (e.g. Q is amenable), then Q must sit inside M 1. This result generalizes the previous results of the first named author in [Ho14] and moreover completely settles the questions of maximal amenability and maximal property Gamma of the inclusion M 1 C M in arbitrary free product von Neumann algebras.

    本文言語英語
    ページ(範囲)489-516
    ページ数28
    ジャーナルMathematical Proceedings of the Cambridge Philosophical Society
    161
    3
    DOI
    出版ステータス出版済み - 11月 1 2016

    !!!All Science Journal Classification (ASJC) codes

    • 数学 (全般)

    フィンガープリント

    「Asymptotic structure of free product von Neumann algebras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル