Applications of artificial neural network for the prediction of pool boiling curves

Guanghui Su, K. Fukuda, K. Morita

研究成果: 会議への寄与タイプ学会誌査読

7 被引用数 (Scopus)

抄録

Artificial neural network(ANN) has the advantage that the best-fit correlations of experimental data will no longer be necessary for predicting unknowns from the known parameters. The ANN was applied to predict the pool boiling curves in this paper. The database of experimental data presented by Berenson, Dhuga et al., and Bui and Dhir etc. were used in the analysis. The database is subdivided in two subsets. The first subset is used to train the network and the second one is used to test the network after the training process. The input parameters of the ANN are: wall superheat ΔTw, surface roughness, steady/transient heating/transient cooling, subcooling, Surface inclination and pressure. The output parameter is heat flux q. The proposed methodology allows us to achieve the accuracy that satisfies the user's convergence criterion and it is suitable for pool boiling curve data processing.

本文言語英語
ページ853-860
ページ数8
DOI
出版ステータス出版済み - 2002
イベント10th International Conference on Nuclear Engineering (ICONE 10) - Arlington, VA, 米国
継続期間: 4月 14 20024月 18 2002

その他

その他10th International Conference on Nuclear Engineering (ICONE 10)
国/地域米国
CityArlington, VA
Period4/14/024/18/02

!!!All Science Journal Classification (ASJC) codes

  • 原子力エネルギーおよび原子力工学

フィンガープリント

「Applications of artificial neural network for the prediction of pool boiling curves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル