APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN DETERMINING THE VELOCITY AND PRESSURE FIELDS AROUND AIRFOIL MODELS

Gopal Sharma, The Hung Tran, Jun Tanimoto

研究成果: ジャーナルへの寄稿会議記事査読

抄録

The article constructs a convolutional neural network for predicting pressure and velocity fields around a twodimensional aircraft wing model (airfoil model). Training data is computed using the Reynolds-averaged method,then extracted, focusing on the flow around the wing. Input data includes geometric parameters, airfoil inlet velocity, and output data includes pressure field and flow velocity around the airfoil. The convolutional neural network is based on improving the U-Net network model, commonly used in medical applications. The results show that the convolutional neural network accurately predicts flow around the airfoil, with an average error below 3%. Therefore, this network can be used and further developed to predict flow around the wing. Results related to pressure distribution, velocity, and method error are presented and discussed in the study.

本文言語英語
ジャーナルICAS Proceedings
出版ステータス出版済み - 2024
イベント34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024 - Florence, イタリア
継続期間: 9月 9 20249月 13 2024

!!!All Science Journal Classification (ASJC) codes

  • 航空宇宙工学
  • 制御およびシステム工学
  • 電子工学および電気工学
  • 材料科学一般

フィンガープリント

「APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN DETERMINING THE VELOCITY AND PRESSURE FIELDS AROUND AIRFOIL MODELS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル