APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN) FOR PREDICTION OF DRAG COEFFICIENT OF AXISYMMETRIC BOATTAIL MODELS

Quang Nguyen Dinh, The Hung Tran, Gopal Sharma, Jun Tanimoto

研究成果: ジャーナルへの寄稿会議記事査読

抄録

The utilization of longitudinal grooves has demonstrated effectiveness in reducing drag on axisymmetric boattail models. However, the intricate relationship between groove parameters and drag force defies simple physical equations, necessitating the discovery of an optimal parameter set. Conventional experimental and numerical simulation approaches prove impractical due to their resource-intensive nature. Instead, Artificial Neural Networks (ANNs) offer a promising alternative. In this study, a three-layer ANN is trained using 192 examples generated by Ansys Fluent with the Reynolds-Averaged Navier-Stokes (RANS) method and the k-ω SST model. Subsequently,48 examples are employed for network validation. Comparison between ANN-predicted values and CFDdetermined drag coefficients reveals an average difference of less than 0.76%, validating the network's reliability.The ANN successfully identifies optimal groove parameters across various boattail angles, and numericalsimulations conducted on models featuring these optimal grooves further validate the ANN's accuracy in predicting drag coefficients, with a negligible deviation of only 0.98%. Additionally, analysis of flow characteristics and aerodynamics aids in understanding factors contributing to drag reduction.

本文言語英語
ジャーナルICAS Proceedings
出版ステータス出版済み - 2024
イベント34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024 - Florence, イタリア
継続期間: 9月 9 20249月 13 2024

!!!All Science Journal Classification (ASJC) codes

  • 航空宇宙工学
  • 制御およびシステム工学
  • 電子工学および電気工学
  • 材料科学一般

フィンガープリント

「APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN) FOR PREDICTION OF DRAG COEFFICIENT OF AXISYMMETRIC BOATTAIL MODELS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル