Analyzing Incentives and Fairness in Ordered Weighted Average for Facility Location Games

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Facility location games provide an abstract model of mechanism design. In such games, a mechanism takes a profile of n single-peaked preferences over an interval as an input and determines the location of a facility on the interval. In this paper, we restrict our attention to distance-based single-peaked preferences and focus on a well-known class of parameterized mechanisms called ordered weighted average methods, which is proposed by Yager [38] and contains several practical implementations such as the standard average and the Olympic average. We comprehensively analyze their performance in terms of both incentives and fairness. More specifically, we provide necessary and sufficient conditions on their parameters to achieve strategy-proofness, non-obvious manipulability, individual fair share, and proportional fairness, respectively.

本文言語英語
ホスト出版物のタイトルECAI 2024 - 27th European Conference on Artificial Intelligence, Including 13th Conference on Prestigious Applications of Intelligent Systems, PAIS 2024, Proceedings
編集者Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarin-Diz, Jose M. Alonso-Moral, Senen Barro, Fredrik Heintz
出版社IOS Press BV
ページ3380-3387
ページ数8
ISBN(電子版)9781643685489
DOI
出版ステータス出版済み - 10月 16 2024
イベント27th European Conference on Artificial Intelligence, ECAI 2024 - Santiago de Compostela, スペイン
継続期間: 10月 19 202410月 24 2024

出版物シリーズ

名前Frontiers in Artificial Intelligence and Applications
392
ISSN(印刷版)0922-6389
ISSN(電子版)1879-8314

会議

会議27th European Conference on Artificial Intelligence, ECAI 2024
国/地域スペイン
CitySantiago de Compostela
Period10/19/2410/24/24

!!!All Science Journal Classification (ASJC) codes

  • 人工知能

フィンガープリント

「Analyzing Incentives and Fairness in Ordered Weighted Average for Facility Location Games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル