抄録
This paper deals with the rotational stability of a rigid body under constant contact forces. For this system, the stiffness tensor is derived, and its basic properties are analyzed. Necessary and sufficient conditions of positive definiteness of the stiffness tensor are established in an analytical form. Partial cases of the contact force distribution are analyzed. For the gravity-induced stiffness, conditions for stability are presented in terms of geometric and gravity centers. The internal forces are introduced with the use of a virtual spring model. Within this representation, conditions for stability under internal force loading are formulated in terms of the stiffness of the virtual springs.
本文言語 | 英語 |
---|---|
ページ(範囲) | 257-262 |
ページ数 | 6 |
ジャーナル | Proceedings - IEEE International Conference on Robotics and Automation |
巻 | 1 |
出版ステータス | 出版済み - 1月 1 1999 |
イベント | Proceedings of the 1999 IEEE International Conference on Robotics and Automation, ICRA99 - Detroit, MI, USA 継続期間: 5月 10 1999 → 5月 15 1999 |
!!!All Science Journal Classification (ASJC) codes
- ソフトウェア
- 制御およびシステム工学
- 人工知能
- 電子工学および電気工学