An aromatic farnesyltransferase functions in biosynthesis of the anti-HIV meroterpenoid daurichromenic acid

Haruna Saeki, Ryota Hara, Hironobu Takahashi, Miu Iijima, Ryosuke Munakata, Hiromichi Kenmoku, Kazuma Fuku, Ai Sekihara, Yoko Yasuno, Tetsuro Shinada, Daijiro Ueda, Tomoyuki Nishi, Tsutomu Sato, Yoshinori Asakawa, Fumiya Kurosaki, Kazufumi Yazaki, Futoshi Taura

研究成果: ジャーナルへの寄稿学術誌査読

20 被引用数 (Scopus)

抄録

Rhododendron dauricum produces daurichromenic acid, an anti-HIV meroterpenoid, via oxidative cyclization of the farnesyl group of grifolic acid. The prenyltransferase (PT) that synthesizes grifolic acid is a farnesyltransferase in plant specialized metabolism. In this study, we demonstrated that the isoprenoid moiety of grifolic acid is derived from the 2-C-methyl-d-erythritol-4-phosphate pathway that takes place in plastids. We explored candidate sequences of plastid-localized PT homologs and identified a cDNA for this PT, RdPT1, which shares moderate sequence similarity with known aromatic PTs. RdPT1 is expressed exclusively in the glandular scales, where daurichromenic acid accumulates. In addition, the gene product was targeted to plastids in plant cells. The recombinant RdPT1 regiospecifically synthesized grifolic acid from orsellinic acid and farnesyl diphosphate, demonstrating that RdPT1 is the farnesyltransferase involved in daurichromenic acid biosynthesis. This enzyme strictly preferred orsellinic acid as a prenyl acceptor, whereas it had a relaxed specificity for prenyl donor structures, also accepting geranyl and geranylgeranyl diphosphates with modest efficiency to synthesize prenyl chain analogs of grifolic acid. Such a broad specificity is a unique catalytic feature of RdPT1 that is not shared among secondary metabolic aromatic PTs in plants. We discuss the unusual substrate preference of RdPT1 using a molecular modeling approach. The biochemical properties as well as the localization of RdPT1 suggest that this enzyme produces meroterpenoids in glandular scales cooperatively with previously identified daurichromenic acid synthase, probably for chemical defense on the surface of R. dauricum plants.

本文言語英語
ページ(範囲)535-551
ページ数17
ジャーナルPlant physiology
178
2
DOI
出版ステータス出版済み - 2018
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 生理学
  • 遺伝学
  • 植物科学

フィンガープリント

「An aromatic farnesyltransferase functions in biosynthesis of the anti-HIV meroterpenoid daurichromenic acid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル